API Methods
This section describes each method provided by the dAIEdgeVLabAPI
client API along with the expected inputs (arguments) and outputs (return values).
Client Initialization and Authentication
__init__(config_file=None, url=None, port=None, auto_refresh=False)
-
Input:
config_file
(str, optional): Path to a YAML configuration file.url
(str, optional): API host address (used ifconfig_file
is not provided).port
(int, optional): API port (used ifconfig_file
is not provided).auto_refresh
(bool, optional): Whether to automatically start the token refresh thread upon login (default isFalse
).
-
Output:
- Initializes the API client instance.
- Raises an exception if neither a configuration file nor both
url
andport
are provided, or if required configuration fields are missing. - Automatically checks the API version and, if using a configuration file, attempts to log in (with optional auto-refresh enabled).
_check_version()
- Input: None.
- Output:
- Checks if the API version is
'0.1'
and that the API status is'OK'
. - Raises an exception if the API version is unsupported or the API status is not OK.
- Checks if the API version is
login(username=None, password=None, auto_refresh=False) -> bool
-
Input:
username
(str, optional): User email to use for login.password
(str, optional): User password to use for login.auto_refresh
(bool, optional): Whether to start the token refresh thread after login (default isFalse
).
-
Output:
- Returns
True
if login is successful and the access token is obtained. - Returns
False
if login fails (and logs an error message). - Raises an exception if no username or password is provided.
- Returns
_refresh_token()
- Input: None.
- Output:
- Runs on a separate daemon thread.
- Periodically refreshes the access token every 10 minutes.
- If an error occurs during refresh, logs the error and stops the refresh thread.
refresh() -> bool
- Input: None.
- Output:
- Refreshes the access token using the current refresh token.
- Returns
True
if the refresh is successful; otherwise, logs an error and raises an exception.
logout()
- Input: None.
- Output:
- Invalidates the access token.
- Stops the refresh thread, ensuring a clean shutdown of the client.
API Status
getAPIStatus() -> dict
- Input: None.
- Output:
- Returns a dictionary with the API status information, including details such as the API version and overall status.
Benchmark Operations
startBenchmark(target, runtime, model_path, dataset=None, callback=None) -> str
-
Input:
target
(str): Identifier for the target device.runtime
(str): Runtime engine to use.model_path
(str): Path to the model file.dataset
(str or binary file, optional): Either a dataset name (string) or a binary file object.callback
(function, optional): A function that will be called with the benchmark result when the job completes.
-
Output:
- Returns the benchmark job ID (str).
- If a callback is provided and the request is successful, a separate thread is started to wait for the benchmark result and pass it to the callback.
notifyOnBenchmarkResult(id, callback) -> None
-
Input:
id
(str): The benchmark job ID.callback
(function): A function to be called with the benchmark result.
-
Output:
- Does not return a value; waits for the benchmark to complete and then calls the provided callback with the result.
getBenchmarkStatus(id) -> dict
-
Input:
id
(str): The benchmark job ID.
-
Output:
- Returns a dictionary with the current status details of the benchmark job.
waitBenchmarkResult(id, interval=2, verbose=False) -> dict
-
Input:
id
(str): The benchmark job ID.interval
(int, optional): Time in seconds between status polls (default is 2 seconds).verbose
(bool, optional): IfTrue
, logs status updates during polling.
-
Output:
- Returns the complete benchmark result as a dictionary once the job status is
success
,canceled
, orfailed
.
- Returns the complete benchmark result as a dictionary once the job status is
getBenchmarkResult(id) -> dict
-
Input:
id
(str): The benchmark job ID.
-
Output:
- Returns a dictionary aggregating:
report
: Detailed benchmark report.user_log
: User log text.error_log
: Error log text.raw_output
: Binary output (bytes).
- Returns a dictionary aggregating:
getBenchmarkReport(id) -> dict
-
Input:
id
(str): The benchmark job ID.
-
Output:
- Returns a dictionary with detailed benchmark report information.
getAvailableConfigurations() -> dict
- Input: None.
- Output:
- Returns a dictionary containing the available benchmark runner configurations.
getBenchmarks() -> dict
- Input: None.
- Output:
- Returns a dictionary containing all benchmark jobs associated with the authenticated user.
- Returns
None
if the request fails.
getBenchmarkInfo(id) -> dict
-
Input:
id
(str): The benchmark job ID.
-
Output:
- Returns a dictionary with general information about the specified benchmark job.
- Returns
None
if the request fails.
Logs and Output Retrieval
getErrorLog(id) -> str
-
Input:
id
(str): The benchmark job ID.
-
Output:
- Returns a string containing the error log for the specified benchmark job.
- Returns
None
if the error log is not available.
getInfoLog(id) -> str
-
Input:
id
(str): The benchmark job ID.
-
Output:
- Returns a string containing the user log for the specified benchmark job.
- Returns
None
if the user log is not available.
getBinaryOutput(id) -> bytes
-
Input:
id
(str): The benchmark job ID.
-
Output:
- Returns a bytes object containing the binary output of the benchmark job.
- Returns
None
if the binary output is not available.
Dataset Operations
getDatasets() -> dict
- Input: None.
- Output:
- Returns a dictionary containing information about the available datasets from the API.
uploadDataset(path) -> str
-
Input:
path
(str): The file path of the dataset to be uploaded.
-
Output:
- Returns the base name of the uploaded file if the upload is successful.
- Returns
None
if the request fails.
deleteDataset(name) -> bool
-
Input:
name
(str): The name of the dataset to be deleted.
-
Output:
- Returns
True
if the dataset is successfully deleted. - Returns
False
otherwise.
- Returns